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Energy solutions, analysis of their environmental benefits - a keynote 
speech reflecting on the solutions available today for the yachting & 
maritime industry
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Source: Adapted from [4]

§ CO2 emissions produced by
maritime sectors account for
approximately 3.3% of global
anthropogenic GHG [4]

§ 70% of emissions generated
within 400 km of mainland,
especially in close proximity to
ports [4]

§ IMO imposing limits on the GHG
emissions through ship energy
efficiency regulations for new
constructions (EEDI, EEOI, SEEMP)
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Source: [5] Brynolf, 2014
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ICE engine
(HFO, MGO, GNL, BTL, LBG) FC + electric engine (H2) Battery + electric engine

1 kWh useful energy 1 kWh useful energy 1 kWh useful energy

1.3 kWh final energy2.74 kWh final energy4 kWh final energy

Sources: [4] Nuchturee et. al. , 2020; Internal documentation
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Sources: [5] Brynolf, 2014, [9] Esser et. al., 2016
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10Sources: [1] Bengtsson et. al, 2011, [5] Brynolf, 2014, [8] Baldi et. al., 2013, [9] Esser et. al., 2016
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11Source: [2] ADEME,2021; [16| Mehmeti, 2018; [17] Cetinkaya, 2012; [19] Salkuyeh, 2018

§ Eq. CO2 emissions includes weighted impact of CO2, CH4, N2O over 100 years
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§ Eq. 2.5𝜇m particulate matter emissions have both impact on health and on climate change
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§ First generation biomass (vegetable oils): competition with
the food industry, degradation of arable land due to high
production yields

§ Production from algae represents a large-scale production
potential (better biomass yield) : 1kWh of fuel requires 10
times more surface area if produced from palm oil than
from algae fermentation [11]

Source: [6] Alalwan,2019

[11] Hartman,2008
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§ Change of surface affectation : major
environmental problems linked to the
exploitation of palm oil in Indonesia
(deforestation, loss of biodiversity, pollution
by pesticides, etc.). Palm oil is the most
widely used (20% of world consumption of
this oil in 2018, the main factor in
deforestation due to this fruit [10])

§ Production cost of $0.07/kWh to 0.1 $/kWh (for
a European rapeseed oil chain) The price of the
raw material accounts for the majority of the
total production cost. The high production cost
is the main obstacle to the development of the
sector [12]. 0
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Biomass derived fuel : example of biodiesel
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Mean hydrogen production costs vs GHG emissions

Storage type Eq. Electrical capacity [kWhe] Mass [kg] Volume [m3]
Battery LiFePo 1 11.0 0.009
H2 Cylinder 350bar 1 1.1 0.023

§ Announced
distribution costs
for 2030 in Europe:
1.2 - 2 €/kg (0.04 -
0.07 €/kWh)

Source: [13]-[20]

§ Hydrogen – battery hybridization helps reducing the mass of the system
while maximizing its efficiency
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Hybrid electrical propulsion system - Hydrogen + battery
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§ The direct emissions associated with the generation of electricity using grey
hydrogen are worse than the use of conventional fuels
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§ The direct emissions associated with the generation of electricity using grey
hydrogen are worse than the use of conventional fuels

§ The high efficiency of fuel cell electrical propulsion system allows for a total cost of
the solution 1.5 times higher than the cost of conventional ICE system

§ Internal combustion engine supplied with liquefied biogas is environmentally
competitive with green H2 systems

§ ICE are always associated with particulate matter emissions. If biodiesel is not
associated with a change in land use (e.g. Food oil waste or algae) it can however
help reducing global warming potential

§ The production cost of biohydrogen is of the same order of magnitude as biodiesel
(5-10cts/kWh) but will decrease in future years

§ The use of 100% renewable H2 is the only way to reduce emissions to a value
competitive with direct RES production system (PV, wind, hydro,...)

§ The balances do not take into account the life cycle of the propulsion technologies
and the real total emissions are therefore higher than announced
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